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Abstract

Object data management (ODM) is currently at the forefront of research and de-

velopment efforts in the database community. This exciting new field has emerged as an

answer to increasingly complex data management problems. Many promising prototypes

and commercial products are emerging. In order to take advantage of ODM technology,

the Department of Defense (DoD) needs to ensure that these systems are accessible to Ada

programmers. Ada is the standard programming language for the DoD and is therefore

used in many important defense-related software development efforts.

The Air Force Institute of Technology (AFIT) is conducting research towards the

development of an Ada ODM interface to existing ODM systems. The design goals are

portability, transparency, and completeness for Ada programmers. Portability means that

the ODM system can be changed without affecting any existing application programs.

Transparency means that Ada programmers can use the interface without having to know

different programming languages or specifics about the different systems being used. Com-

pleteness means that all of the functionality of the ODM systems are available to Ada

application developers.

This thesis defines requirements for an Ada ODM interface and proposes a design. In

addition, the challenges associated with implementation are investigated using commercial

ODM systems at AFIT. Implementation of the interface is based on the use of Ada bindings

to the existing application program interfaces (APIs) of the ODM systems. A preprocessor

will be necessary in order to achieve transparency.

ix



AN OBJECT-ORIENTED DATABASE

INTERFACE FOR ADA

L Introduction

Object data management (ODM) is currently at the forefront of research and de-

velopment efforts in the database community. This exciting new field has emerged as an

answer to increasingly complex data management problems. Many promising prototypes

and commercial products are emerging. In order to take advantage of ODM technology,

the Department of Defense (DoD) needs to ensure that these systems are accessible to Ada

programmers. Ada is the standard programming language for the DoD and is therefore

used in many important defense-related software development efforts. This research effort

defines requirements for an Ada interface, recommends a design solution, and looks at the

associated implementation challenges.

1.1 Background

The management of information has become essential to the daily work of industry

and government. For this reason, database management systems (DBMS) have become a

central component in modern computing. The DBMS provides a convenient and efficient

environment for the creators of computer applications to retrieve, store, and manipulate

large bodies of data. DBMS responsibilities include integrity control, query processing,

recovery, concurrency control, transaction processing, data security and more.

The use of the DBMS has ! i to the development of many different data models

to describe data, data relationships, data semantics, and consistency constraints. DBMS

technology has evolved over the last thirty years in three generations which can be distin-

guished according to logical data model. Originally, data was stored in fiat file systems and

all of the functionality mentioned above was left up to the applications. First generation

DBMSs are based on the network and hierarchical models. These models require data to be

stored in fixed-format records of several types. The records define a fixed number of fields

1-1



and each field is a fixed length. In the network and hierarchical models, the relationships

between records are represented by links or pointers. The network model is arranged as

a collection of arbitrary graphs, while the hierarchical model is arranged as a collection

of trees. The second generation of DBMS is based on the relational model which repre-

sents data and data relationships by a collection of tables, each of which has a number of

columns with unique names. While also a fixed-format record based model, the relational

model relates records by the values they contain rather than pointers. This feature allows

a formal mathematical foundation to be defined for the relational model. For this reason

and many others, the relational database has become the most popular and widely used

data model.

Despite its popularity, the relational model has many shortcomings for representing

and describing information. These deficiencies are major problems for DBMS developers

who want to support new kinds of applications which have requirements much different

than traditional business applications. Traditional database applications manipulate large

numbers of similar data items or records which are short and fixed length. These applica-

tions are characterized by short transactions requiring no human interaction. The database

schema is changed infrequently and usually only simple changes are required.

Newer applications have much different requirements including the manipulation

of complex, interrelated data for science and engineering purposes. Examples include

computer-aided design (CAD), computer-aided software engineering (CASE), multimedia,

and expert systems. Advances in computer hardware and database technology have made

these types of applications practical candidates for database management. Among the data

elements introduced by the new applications are complex objects, behavioral data, rules

information, and media information. This data requires new data models, new transaction

models, and new query facilities.

These new requirements have led to the developement of the third generation of

DBMS. Third generation systems are not so clearly defined. They have become known

as object data management systems (ODMSs) because they all profess to store and ma-

nipulate objects in the sense of the object-oriented programming paradigm. The cur-

rent state of ODM is characterized by the lack of a common data model and the lack of
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formal foundations. Many prototypes and products are emerging but with no standard

design methodology. There is still much debate about what approach should be taken

to implement ODM concepts. Several approaches have been proposed, but the extended

object-oriented programming language (OOPL) and the extended relational database man-

agement system (RDBMS) are emerging as the most popular and the most promising. The

extended OOPL implements an ODMS by extending an existing programming language

with DBMS facilities. This approach has been very popular in research prototypes and

commercial products. The second approach implements ODMS concepts by extending the

capabilities of a relational query language. Extended RDBMSs retain the benefits of many

years of experience and research with the relational model (6).

Table 1.1 provides a summary of engineering design tool requirements and shows how

these requirements are supported in second and third generation DBMSs (10). Column

one contains an ODM requirement, while column two states how the requirement could

be realized in an engineering design system. Columns three and four explain how the

requirement is supported in the traditional DBMS versus the object-oriented DBMS.

The differing approaches to ODM and the state of flux in ODM technology have led

to some confusion over terminology. Catteil (6), for example, uses the term ODM to include

systems based on object-oriented, semantic, functional, and extended relational models of

data. In this thesis, the term ODM system refers to systems that use the object-oriented

data model and are characterized by integration with existing programming languages.

1.2 Problem Statement

One of the most important components of a DBMS regardless of its data model is the

Application Program Interface (API). The API is the tool through which a user's programs

interact with the DBMS. The usefulness of a DBMS, to a large extent, depends on the

number and type of programming languages supported by the API. Many of the ODM

systems currently available support APIs using the C or C++ programming language.

These languages are widely used in industry and the decision to support them is driven by

supply and demand.
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Design Tool Traditional Object-Oriented
Characteristic Example DBMS DBMS

Complex State References to A key is required for Fundamental to the
subcomponents each sub-component. object-oriented
within circuit. Joins are required to paradigm.

merge into a single
object.

Inheritance New adder inherits Complete specification Fundamental to the
attributes of a of the schema must be object-oriented
typical adder and defined a prio. paradigm.
modifies them to fit
a particular circuit.

Complex Data Graphical represen- Only supports basic Supports graphical and
Types tation of a circuit. data types such as textual data and allows

integer and character. user to define data
types.

Multiple Views Top level view of Must be defined in the Can be specified as a
design or more application. Limited by method for the object.
detailed look at a record oriented retrieval. Data is more easily
sub-component. retrieved using

object-oriented storage
techniques.

Multiple Current and May support multiple Generally built in as a
Versions historical versions. versions of individual tree structure with root

records. node r, presenting a
version. Tree includes
all objects which make
up the version.

Phased Top down design. Not supported. Entire Refined schema can
Development schema must be defined inherit characteristics of

a priori, a higher level and
modify for next phase.

Large Data Thousands of Limited only by physical Clustering by object
Volume sub-components in storage; however, reduces the number of

a circuit. record-oriented storage disk accesses. Complex
may limit the size of data types remove
record, causing multiple object size restrictions.

record retrievals for a
single object.

Long Designer takes two Built around short More appropriate
Transaction weeks to modify a business transactions. concurrency control and
Duration specific circuit Inefficiency and failure failure recovery methods

design. occur with long used to support long
transactions, transactions.

Fast Thousands of sub- A single view requires Designed to retrieve
Performance components are multiple joins and many large amounts of data at

retrieved and dis- individual accesses. once.
played in seconds.

Table 1.1 DBMS Support of Engineering Design Tool Characteristics (10)
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There are currently no commercially available ODMSs that include a complete API

for the Ada programming language. This creates a major problem for the Department of

Defense (DoD) whose standard programming language is Ada. DoD projects are becoming

increasingly complex and data intensive. With this complexity, the need for ODM continues

to increase. One example can be found in Wright Laboratory's Functionally Integrated

Resource Manager (FIRM) program. The FIRM program will provide a real-time database

management system for the integrated avionics systems that will be a part of future fighter

aircraft. The Ada programming language will be used in this effort along with an object-

oriented database management model for avionics data management (13). In order for

DoD applications, such as the FIRM program, to take full advantage of object-oriented

data management, an Ada API must be developed.

This problem is complicated by the lack of standardization in ODM. Most relational

DBMS vendors supply capabilities which at least match those defined in the ANSI SQL

standard. This is nice for defining a generic interface for any relational DBMS, but there

is currently no SQL-like standard for ODM systems.

1.3 Approach

Hedstrom (8) identifies two possible approaches to integrating Ada (or any other

programming language) to an ODM system architecture. The first type of approach is

called loosely coupled. A loosely coupled interface does not assume the data model of

Ada necessarily matches the data model of the database. This approach acknowledges

the need to interface Ada to existing databases, but the obvious disadvantage is that

data translation is required at the application interface since data types used in database

systems do not always match Ada data types. One example of a loosely coupled interface

to Ada is the one provided by ORACLE, a popular relational system. The second type

of approach is called tightly coupled. A tightly coupled interface is one where the Ada

data model is equivalent to the object oriented data model. Such an interface would be

seamless meaning that persistent data and transient data would be handled identically.

A seamless interface makes interfacing with the database easier. In addition, Ada types

would match database types eliminating the need for data conversion. The problem with
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a tightly coupled Ada interface is that Ada extensions may be required to support objects.

In addition, since there is not a single object model, a unique extension for each ODM

system may be required. The existence of Classic Ada with persistence provides evidence

that a tightly coupled solution can be found. Features of Ada 9X may also prove helpful

in realizing a tightly coupled interface (8).

The primary focus of this research effort is on the design of a loosely coupled Ada

interface. The goal is to define an interface that is portable to different ODM systems.

The Air Force Institute of Technology (AFIT) currently owns three ODM systems: Itasca,

ObjectStore, and Matisse. AFIT plans to use these systems for research projects and

for educational purposes. This study investigates the possibility of a single Ada interface

package for all three of these systems. This would enable Ada programs to access any

of the three ODM systems through the use of one software package. If possible, such an

interface would prove extremely valuable, not only to AFIT, but to a number of DoD

programs developing Ada-based software.

The approach used in this effort was to derive a set of requirements based upon

current literature in ODM, features of existing commercial systems, and the needs of new

applications. An interface was then designed to realize these requirements trading off the

goals of portability, transparency, functional completeness, and performance. The design

takes advantage of Ada's language interface capabilities to make calls to the existing C

APIs which all of the ODM systems have in common.

1.4 Materials and Equipment

Among the equipment used in this research effort was a Sun Sparc Station II, a

SunAda compiler, the ObjectStore DBMS, the Itasca DBMS, and the Matisse DBMS. The

Ada ODM interface was designed within this environment. All of these items are available

in AFIT laboratories.
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1.5 Document Summary

In the next chapter we look at what features are expected in an ODM system and

present an overview of the systems used at AFIT. In addition, Ada's object-oriented capa-

bilities and limitations are investigated. In the third chapter, we present the requirements

for an Ada ODM interface and a design solution based on a set of design goals. In the

fourth chapter, we explain the techniques that can be used to implement the design and

then look at the implementation challenges such a design presents. In the final chapter,

we draw conclusions based on this research and present recommendations for future work.
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II. Literature Review

2.1 Overview

The ultimate goal of this effort is to provide the benefits of persistent storage and

ODM to Ada application developers. What is persistent storage and why is it important?

What features characterize an ODM system? In this chapter we answer these questions

by reviewing current literature in ODM. In addition, we provide an overview of ODM

systems used at AFIT.

2.2 Pereistence

Persistence is the concept of preserving data in a reusable state. From the program-

ming language point of view, persistence is the ability of the programmer to have data

survive the execution of a program, in order to reuse it in another program. Persistence

can be very useful to a software developer. The persistence model for an ODM system can

be language centered or language neutral Language centered means that the persistent

data model is based on an individual programming language. The close correspondence

between the data model of the ODM system and the data model of the programming lan-

guage results in less of a seam between persistent and transient data. Language neutral

means that the ODM system has its own data model unlike any particular programming

language. This approach facilitates sharing of objects between languages (18).

Persistence should be transparent to the developer. Typically, however, the structure

of data within a programming language is quite different than its structure for long-term

storage. Fregramming languages have many different ways to structure data efficiently

for a particular application. Programmers can create and manipulate trees, lists, graphs,

sets, and more. Data thaf is required to persist (long-term storage) must then be stored in

the flat file system tradiiionally provided by operating systems. This dichotomy between

short-term program structures and long-term file structures causes a considerable amount

of program code to be used for conversion of data structures (14). Typically, 30% of

program code is concerned with transferring data to and from files or a DBMS (2). It

would obviously be very beneficial fiom va programmer's point of view to have all of the
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I/O and data structure conversions done automatically. The amount of code could be cut

considerably, thus increasing productivity and enhancing program maintenance.

Persistence is listed in (3) as a mandatory feature for ODM systems. The authors

note that persistence in an ODM should be orthogonaL This means that each object,

independent of its type, should be allowed to be persistent without explicit translation by

the programmer. Attempts have been made to make a persistent Ada through various

research prototypes and also through a commercial product known as Classic Ada with

persistence. Classic Ada, a product marketed by Software Productivity Solutions, Inc.,

extends standard Ada with object-oriented constructs. It does so by providing object-

oriented constructs which are reduced by a preprocessor to legal Ada constructs. Classic

Ada with persistence provides an extra keyword, persistent, so that a user-defined class

can be declared persistent. The primary disadvantage of this product is that all instances

of a persistent class must be stored and retrieved as persistent objects. In other words, all

instances must be persistent or none are persistent. Therefore, the orthogonality require-

ment is not satisfied.

2.3 ODMS Features

The task of designing an Ada ODMS is complicated by the lack of standardization

in the field. In recent years, a consensus has emerged on what constitutes a minimal

ODM system. Two important papers were written in 1989 by proponents of both the

extended-relational and the OOPL approaches. The first paper, "The Object-Oriented

Database System Manifesto", cites a number of mandatory rules that a database system

must satisfy to be classified as an ODM system. The second paper, "Third-Generation

Data Base System Manifesto", describes three general tenets for ODM systems and then

describes necessary features to support the tenets. The authors argue that the industry

should focus on integrating relational technology with ODM concepts. While both papers

differ on implementation approach, a close look reveals broad agreement on the ultimate

results (11). In (4), Barry compiled a list of possible features for an ODM system using the

two manifesto papers and eighteen other sources. This list is used to organize the following

discussion of ODM features.
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2.3.1 Object Model. Support for the object-oriented programming paradigm is

what truly distinguishes ODM systems from traditional DBMSs. ODM systems manipulate

objects which represent not just persistent data (attributes) but also operations on the data.

Object-oriented principles include data abstraction, encapsulation, classes, inheritance,

and object identification. Data abstraction is the ability to define abstract data structures

composed of a variety of data types. The data structures could be trees, sets, graphs,

queues and so on. Using these structures, objects can be grouped together and treated

as one entity. Data abstraction make it easier to model real-world complexity for which

relational systems are inadequate.

Encapsulation is a key concept in object-oriented technology. The concept states

that objects should hide their code and data, while providing an external interface for op-

erations on the data. Thus, programs that manipulate the objects are only concerned with

the behavior of the operations on the objects and not the implementation of operations.

This allows the implementation to change without disrupting programs that use the data.

Encapsulation helps to reduce the cost and time required to produce complex applications

by making it easier to maintain and improve code (12).

Another way to reduce programming costs is through inheritance. Inheritance is the

ability to derive new classes from existing classes. Objects that share the same attributes

and behavior are grouped together in a class. A class is analogous to an abstract data

type but may also be a base type such as an integer or string. Classes are organized into

class hierarchies where they can have subclasses or superclasses. A subclass inherits the

attributes and behavior of its parent class. Inheritance provides support for reusable code

and data which saves development costs.

Object identification is another important object-oriented principle. Many ODM

systems automatically supply unique object identifiers (OIDs) for each persistent object.

There are advantages to using OIDs. OIDs are immutable and completely independent of

changes in data values or physical location. Also, OIDs provide a uniform way to reference

objects.
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2.3.2 Transaction Properties. A transaction is a program unit that reads and

possibly writes various data items. Transactions are used as tools to support the traditional

database functions of concurrency and recovery. This is because transactions must satisfy

the atomicity, consistency, isolation, and durability (ACID) properties. Atomicity means

that all operations in the program unit are completed or none are completed. Ideally,

atomicity should be maintained in the presence of deadlock, database software failures,

application software failures, CPU failures, or disk failures. Consistency means that a

transaction provides a transistion between consistent states. Isolation means that infor-

mation does not flow between active tansactions. In other words, a transaction's results are

not revealed to other concurrent transactions until its results are committed. Durability

means that the effects of a transaction are permanent in the database. This permanence

should be maintained in the face of the various types of failures mentioned above.

The transaction is a well-established DBMS concept, but the field of ODM has in-

troduced the concept of long duration transactions. A long duration transaction may last

hours or days. For instance, in a Computer Aided Design (CAD) system, a design engineer

may need to work on a particular design over the span of several days. In the meantime,

one of his fellow engineers may wish to work on the design concurrently. This could mean

major delays for the second engineer if the design is locked for several days. Another

problem with long transactions is the possibility of system shutdown or failure. One way

of handling long duration transactions is to implement a version management facility. A

version is like a snapshot of a design object at some phase of the design process. An object

can range in complexity from the primitive object which models a simple real-world entity

to complicated composite objects used to model more complex design entities. By creating

different versions of objects, concurrent design work can be performed on the same design

and then the versions can be merged later. Version management is an essential feature for

ODM systems designed for CAD applications (1).

Another important type of transaction for both the traditional DBMS and the ODM

system is the nested transaction. Nesting transactions allows a finer grain of control for

rolling back persistent state. In addition, allowing nested transactions enables a routine

that initiates a transaction to be called from within a separate transaction (12).
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2.3.3 Locking and Concurrency ControL Locking and concurrency control tech-

niques are used to manage multiple users interacting concurrently with a DBMS. With

respect to concurrency control, ODM systems should provide the same level of service

currently provided by second generation systems. Concurrency control can be optimistic

or pessmistic. Optimistic control assumes that simultaneous access to the same object

is rare and therefore only checks conflicts at commit time. Pessimistic control usually

involves locking mechanisms where access conflicts are checked when the locks are re-

quested. Optimistic control techniques provide better performance if conflicts are indeed

rare. Otherwise, optimistic control could suffer from many aborted transactions.

Locking techniques are an important feature of ODM systems. Locking can occur at

the class or instance level. A complex composite object may be locked as a design entity

or locks may be allowed on individual objects that make up the composite object. Locks

may be escalated from instance level to class level when a large number of instances are

locked in order to improve performance. Automatic promotion of locks from shared to

exclusive may occur based on the activity involved. Many of these locking features are

transparent to the user, but some control may be allowed and therefore locking could be

a consideration when designing an interface.

2.9.4 Schema Modification. Frequent schema changes are necessary in many

of the complex applications for which ODM systems are designed. Schema modification

implies modifying programs that use the old data schema, modifying existing instances

of the modified types, and considering effects of the changes on the remainder of the

schema. The overhead associated with schema changes can be eased by maintaining data

independence. This is the ability to change data stored in a database (such as database

definition or schema) with minimum impact on existing applications. As described above,

encapsulation of procedures is one way to achieve this goal. One example where this

is particularly important is in design applications. Users of design applications are just

as likely to change schema information as the application programmer. For example, a

designer of some electronics system may need to define a new electronic component or

define a design constraint (6).
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2.3.5 Query Capability. One of the most important features of a database sys-

tem is the ability to retrieve and manipulate data. Query languages have proven to be

indispensable in relational systems, and most ODM researchers are in agreement about

the importance of providing some form of associative access to data in ODM systems as

well (3, 15). This is in contrast to the navigational point of view which is allowed by some

systems. Navigational access to data implies the ability to access a specific record using

a low-level procedural interface. One or more elements of the record would be a pointer

to another record. The application could then navigate through by dereferencing pointers

to establish new current records. The authors of (15) argue against this type of access

for a number of reasons mostly due to the effect on schema evolution. If indexes on data

change or data is reorganized by clustering, the programmer must change his program

to account for the modified physical access paths. This compromises data independence

which adversly affects program maintenance and development costs. Access to data using

a non-procedural query language provides a mechanism for data independence.

2.4 Overview of AFIT ODMSs

As mentioned in chapter one, AFIT owns three ODM systems: Objectstore, Itasca,

and Mattisse. These systems are extended object-oriented database programming lan-

guages (OOPLs). Extended OOPLs differ from the other categories in their use of the

object-oriented data model and in their integration with existing programming languages.

Extended OOPLs are designed to provide a unified programming interface for both persis-

tent and transient data. This close integration of programming language and data model

helps to overcome the impedance mismatch problem between applications and the database

model. The database system enhances the programming language by providing concur-

rency control, persistence, a query language, and other traditional DBMS capabilities.

Despite being classified similarly, the AFIT ODM systems differ in a number of significant

ways. The following is an overview of the systems used at AFIT.

2.4.1 Objectstore. Objectstore, developed by Object Design of Burlington, Mas-

sachusetts, is an ODM system designed to make C++ a database programming language.
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This means Objectstore can be classified as language centered since the data model is

based on an individual programming language. Any type of C++ or C data can be made

persistent including C++ objects. Persistent data stored using Objectstore is manipulated

by C++ or C programs in the same way as transient data. The capability to declare data

persistent is provided by overloading the memory allocation operator for C++ and C.

Objectstore provides a library of collection types including sets, lists, bags, and ar-

rays. Collections are a convenient means of storing and manipulating groups of objects.

By using different types of collections, the user obtains a great deal of control over the be-

havior and representation of groups. For example, collections can be ordered or unordered,

and they can allow duplicates or prohibit duplicates. Collections can be used to model

one-to-many and many-to-many relationships and they provide a convenient domain for

executing queries (12).

Short-term concurrency and reco'ery is handled in Objectstore through a conven-

tional transaction model using two-phase locking. Long-term concurrency and recovery

is provided using a version control facility. Objects can be grouped into design entities

known as configurations. Configurations can be checked out into private workpaces where

they can be modified and then checked back into shared workspaces. Configurations can

be locked while checked out to prevent simultaneous updates or alternate versions can be

used to allow concurrent design work.

Objectstore can be used for the development of either C or C++ applications. There

are four approaches to using Objectstore: the C library interface, the C++ library interface

without class templates, the C++ library interface with class templates, and the C++

library interface with class templates and the Objectstore database manipulation language

(DML).

2.4.2 Itasca. Itasca, developed by Itasca Systems of Minneapolis, Minnesota, uses

object-oriented principles and is classified by Cattell as an extended OOPL due to its close

association with Lisp (6). However, the intention of Itasca developers is to provide language

neutral access to Itasca. Itasca neutrality is compromised somewhat by its dependence on

Lisp. For example, query expression construction is dependent on Lisp syntax.
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An application program does not need to be written in an object-oriented language

to make full use of Itasca functionality since Itasca itself encapsulates a complete object

model. Objects in Itasca have a unique identifier along with a state and behavior. The

state of each object is represented by a set of attributes. The behavior is defined by a set

of methods (code). Objects that share the same set of attributes and methods are grouped

together in a class object. Itasca supports inheritance by allowing subclasses to be derived

from existing classes. The resulting schema is a class hierarchy. Persistence is automatic

for Itasca objects.

Itasca has all the features one might expect from any DBMS including concurrency

control, transaction management, multiple security levels and recovery. Itasca also features

functions to perform queries on database objects. Several features distinguish Itasca from

others. Itasca supports dynamic schema modification. Users with security access can make

changes to the schema at any time without affecting other parts of the database at the

time the changes occur. Long duration transactions are supported by allowing users to

check objects out of the shared database into their own private databases. Users can then

modify the checked out objects without affecting the shared database or other users. The

changes can then be checked back into the shared database or committed to the private

database.

Itasca is a distributed database. The shared partition is distributed across sites in a

network. Itasca clients provide transparent access to all parts of the shared database. Any

number of private databases can exist at each distributed site (9).

2.4.3 Matisse. Matisse, developed by Intellitic International, is the third ODM

system used at AFIT. Matisse uses its own data model and is not tied to any one pro-

gramming language. Matisse provides all the traditional database features, but comes up

short in certain areas specific to ODM. It doesn't support long transactions and has a

limited versioning facility. One of the biggest drawbacks for interfacing purposes is that

Matisse doesn't provide a query capability from an API. Queries must be performed from

a graphical browser tool or must be hand-coded.
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2.5 Object-Oriented Progamming in Ada

One of the principle advantages of the object-oriented programming paradigm is

that it encourages building and extending software systems from reusable parts. The Ada

language supports reusability through its package facility which is the mechanism through

which abstract data types (ADTs) can be defined. ADTs encapsulate data and behavior

and are analogous to classes. This has prompted some to classify Ada as an object-oriented

language (5). However, Ada does not have some essential features necessary for directly

implementing object-oriented programming such as inheritance of classes and dynamic

binding of messages. Correcting these deficiencies is among the goals of Ada 9X (8).

2.6 The Ada/Objectstore Prototype

Object Design, Inc, produced a prototype Ada interface in January of 1992. This

prototype was the basis for Li Chou's work at AFIT to improve the accessibility of Object-

store to Ada programmers. The Objectstore prototype provided functions and procedures

for manipulating databases, transaction management, and persistent declarations. Chou

added access to the collection facility. The Ada/Objectstore interface was accomplished

by using Ada pragma interface statements to call C library routines from within Ada ap-

plications. The work of Object Design and Li Chou has shown that these Ada bindings

provide access to the functionality of Objectstore without Agnificant degradation in per-

formance. Since the Ada bindings are the basis for the design described in this document,

the technique is discussed in chapter four.

2.7 Summary

The field of ODM is new and still developing. While no standards have yet been

defined, common features are evolving from commercial systems and research prototypes.

This chapter presented a summary of features that characterize ODM systems and looked

at some specific systems used at AFIT. Some of the features are standard for database

management and can be found in traditional relational systems while others are more

unique to ODM. In the next chapter, we define requirements for an Ada ODM interface

and propose a design.
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IHL Requirements and Design

9.1 Overuiew

The purpose of this chapter is to identify the requirements for an Ada ODM interface

and to present an Ada package specification for the interface. Design goals are also exam-

ined. The requirements are derived from the OODBMS manifesto (3), Barry's feature list

(4), discussions with Major Roth, and studies of the three AFIT ODM systems (Object-

store, Itasca, and Matisse). The following requirements specification only describes what

is required for the interface and not how it will be implemented.

3.2 General Requirements

The following section presents the general requirements for ODM using Ada. The

requirements are based on the needs of Ada programmers and not on the capabilities or

limitations of any one system. Ideally, ODM requirements should be evaluated from the

perspective of the intended application, but the focus here is on what aspects of persistence

and ODM functionality need to be visible to all Ada programmers, and on what needs are

shared by a large set of applications. This excludes ODM features which are particular

to a given system or application. In addition, this section ignores features over which the

ordinary user exercises no control such as the locking mechanism.

3.2.1 Initialization. Most systems require some type of initialization process.

This could be a means of collecting security information such as a user name and pass-

word, or the system may require parameters to indicate server or client information. Itasca,

for example, requires a connection to the Itasca image to be established by calling Icon-

nect-itasca before using any C API functions. In order to handle any required initializa-

tion, the Ada interface should include some appropriate utilities.

3.2.2 Persistence. The basic requirement for persistence is that Ada program-

mers have a means of declaring data persistent. Also, persistence should be transparent

so that the programmer need not worry about how the data maps between memory and

storage. In addition to these requirements, there are other aspects of persistence which are
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desirable but not required. One issue concerns the question of what types can be declared

persistent. As discussed in the previous chapter, data type orthogonality is a desirable fea-

ture. Ada programmers need to be able to declare defined Ada types as persistent objects

as well as any user-defined types. Another important feature is persistence independence.

This means that the persistence of a data object is independent of how the program ma-

nipulates that data object. For example, an application should be able to call a procedure

with either persistent or transient objects as parameters (2). The degree of orthogonality

and independence is dependent on the choice of the persistence model: language centered

or language neutral.

Support for persistent data which can be shared by a number of processes concur-

rently implies the need for access control and some type of transaction mechanism. Also,

the way in which data is referenced and manipulated wil effect the syntax for persistence

support. For these reasons, the functions and procedures for supporting the persistence

requirements appear in the following sections.

3.2.3 Database Access. ODM systems will typically maintain a database using

some operating system file. This Mfie contains a schema description as well as the data.

Application programmers require a means of manipulating the database files. In addition,

access control is usually required to protect the data from misuse. To support these

requirements, the interface should include facilities to create, destroy, open, and close

database files.

3.2.4 Transactions. All access to persistent data must take place within a trans-

action. This ensures the information seen by applications is in a consistent state. The

transaction model can be presented to applications in various ways. A transaction model

can be flat or nested. As noted in chapter two, nested transactions are a desirable feature

and should be implemented if possible. Another issue is whether or not the start and

end of transactions are explicitly exposed to applications. For example, these events could

be implicit in the beginning and end of a program. Unrecoverable errors would then be

treated as a call for an abort. By having an explicit start transaction call, the user can

define a nesting structure in a straight forward manner. Also, concurrency is improved
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if transactions are only used when necessary. For these reasons, the transaction model

should include a start transaction call, a commit transaction call, and an abort call.

3.2.5 Object Requirements. Cattell defines objects as real-world or abstract

entities that we model in a database (6). Object implementation can take many forms.

An object can be a simple integer or an Ada record, however, ODM applications must

deal with complex objects that may consist of multiple data types, may have relationships

to other objects, and may be associated with specific behavior (code). Ada programmers

need a way to represent and manipulate complex objects in their ODM applications.

Data representation in a database is described by the database schema. Users of the

Ada ODM interface must have a consistent method of specifying the schema regardless of

the system being used. This includes the different classes of objects that will be used in

the application. In addition, the interface should provide the ability to create and delete

objects. In order to manipulate objects, users will need to refer to objects through the

use of unique object identifiers, also known as OIDs. Many ODM systems automatically

generate unique identifiers. Some systems allow direct access to these system-generated

OIDs to refer to objects.

A data value held by an object has a name and a type. These data values, or

attributes, can take on a simple or a complex value. Simple attributes are those that take

on literal values such as integers and strings. Complex attributes are those that define a

set or a reference to another object. They are used to represent one-to-one, many-to-one,

and many-to-many relationships. Ada programmers will need operations in the interface

to specify initial attribute values, update these values, and get the values.

Encapsulation of data and code is another important requirement for objects. The

user should be able to define operations for a class of objects. Ideally, these operations

should then be stored in the database along with the data for the class. By storing the

procedures in the database, the implementation of the procedures can be modified without

affecting any existing application programs.
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3.2.6 Query Capability. Ada ODM users need a simple way to query data. Most

ODM systems feature a facility for expressing a query over some collection of objects. As

a minimum, the query function will take a class name and a query string as parameters.

Return values are typically some set that satisfies the query criteria. In addition, many

systems feature a query function that returns a single element. This is more efficient when

it is known that only one object element is sought. The Ada ODM interface should include

analogous operations.

3.2.7 Schema Evolution. Cattell (6) identifies three important classifications

for schema modifications. Considering the object requirements identified above, all three

classifications are important for defining schema evolution requirements for the Ada ODM

system interface. The first category involves changes to the components of a class. The user

must be able to add an attribute, drop an attribute, change the name of an attribute, or

change the type of an attribute. Similarly, a user should be able to add or drop a method,

change the name of a method, or change the implementation of a method. The second

category involves changes to the class hierarchy. This would involve adding a new supertype

or subtype relationship or removing an existing supertype or subtype relationship. The

final category concerns changes to the classes themselves. The user might need to add a

new class, drop an existing class, or change the name of an existing class.

3.2.8 Long Duration Transactions. Current commercial ODM systems have

generally addressed the problem of long term concurrency control in two ways. The first

is through the use of conversational transactions which allow data to be checked out for a

long period. The second solution is through the use of multiple object versions which allow

coordination among multiple users. Ada users need a way to handle long transactions, but

the semantics between current ODM system implementations vary widely and no standard

set of features has evolved. This creates a problem in defining requirements for the Ada

ODM interface since some systems have more flexible versioning capabilities than others.

This problem is addressed again in the next chapter.
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3.3 Design Goals

The overall goal is to provide persistence and ODM functionality for Ada program-

mers. The approach, as outlined in chapter one, is to create an Ada API to existing ODM

systems. Keeping this approach in mind, their are certain high level requirements that

are desirable. These requirements are called design goals since they may not be 100%

realizable. Instead, they are considered to be desirable characteristics of an ideal interface

and are kept in mind throughout the design process as ultimate goals.

9.3.1 Portability. A worthwhile goal of any software development effort should be

portability. This means that the system is flexible enough to suport changes in hardware,

external software, and commercial off-the-shelf (COTS) products with minimal effect on

design and implementation (17). In the case of an Ada ODMS interface, portability means

the interface can be used with any underlying ODM system. This goal is achieved by only

including capabilities in the interface that are common to all ODM systems. This is not a

simple task since no standard currently exists which ensures a minimum set of capabilities

for commercial ODM products. The requirements outlined in the previous section serve

as the basis for the ensuing analysis and design.

3.3.2 Dhansparency. Another important characteristic for an Ada ODMS in-

terface is transparency. This involves the hiding of information from the user related to

implementation. The Ada programmer should not need any knowledge of another pro-

gramming language or of a particular ODM system. The programmer should be able to

write a complete Ada application using regular Ada function or procedure calls to access

the ODM facilities without special constructs.

5.S." Completeness. The Ada programmer should have access to all of the func-

tionality fc,: the ODM system being used. This would seem to be in conflict with the

transparency goal since different ODM systems have different features and, therefore, may

not map very well into a transparent interface. In other words, the user may require knowl-

edge of the underlying ODM system when using certain features. In addition, the support

an ODM system offers for a feature can vary considerably. The variation in features such as
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version management makes it tempting to take a least common denominator approach and

only include capabilities common to all systems. This approach is undesirable since valu-

able database functionality is lost, but may be unavoidable in some cases. The tradeoffs

between transparency and completeness have a significant effect on design decisions.

3.3.4 Performance. A final goal concerns performance. The Ada ODMS interface

should not significantly degrade the performance of the ODM system or systems. This is

an implementation issue and is discussed further in the next chapter.

9.4 Design

The design of the Ada ODMS interface can best be described as a layered approach.

Figure 3.1 shows the overall concept. Each application communicates to the interface

package directly, although in certain cases a preprocessor is necessary to provide a measure

of transparency during application development. This is discussed further below. The

interface layer, which is implemented in Ada, communicates with the API of the vendor

specific ODM system. The ODM system alone is responsible for the transfer of data back

and forth from non-volatile storage.

AppIicatioa in Aplication in
AdmiX Passtn Ada 8•gX

I

Ads/OODBMS Pak

/1, 0
00

Figure 3.1 Overall Design
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Figure 3.2 shows the breakdown of the different components of the interface which

consists of two layers. The application interface layer is visible to the application and

contains the main interface package. This package includes all of the core functions and

procedures which must be supported by all ODM systems which use the interface. In

addition to the core functionality, some systems may provide very useful features which

are not included as part of the main interface package. To support this possibility, one

or more annex packages can be added to handle functionality that is only supported by a

subset of vendors.

The first layer serves to insulate the application from the details of the database

interface layer. The database interface layer contains the bindings which allow Ada pro-

grams to use code written in another language. This method of binding Ada to the API

of the ODM system is discussed in detail in the next chapter. Due to these bindings, the

database interface layer is specific to a given system. However, if the ODM system is to be

changed, this is the only layer that would be affected. Any such changes are transparent

to the application. This layer may consist of several packages that together make up the

interface to a certain system.

3.4.1 The Preprocessor. The persistent Ada ODM interface makes use of a

preprocessor. There are several reasons why this might be useful. Up to this point, the

discussion has been limited to general requirements and design without considering specific

ODM systems. However, in order to understand the need for a preprocessor, the Object-

store application development process must be understood. The Ada ODMS interface is

designed to make the application development process simple and straightforward. The

Ada programmer writes an ODM application completely in Ada. ODM functionality is

accessed by simple procedure and function calls to the interface layer. Ideally, everything

from initial schema definition to querying existing data can be accomplished in this man-

ner. The Objectstore ODM system presents some roadblocks to realizing this concept.

Objectstore application developers must have a separate schema source file. The schema

source file specifies all classes and types in the application that are read from or written

to persistent storage. By comparison, schema definition in Itasca can be accomplished
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within the application. A preprocessor would allow a resolution of the two different appli-

cation development processes. Special constructs can be used by the Ada programmer to

define a schema within an application. The preprocessor would then scan the application

to determine what is required, and then create a database and set up the schema for the

underlying ODM system.

A preprocessor could also help in situations where the syntax used in the API of

an ODM system is tied heavily to a certain programming language. This means the

Ada programmer must know something about the other language to use the interface.

Objectstore and Itasca both have examples of this in their respective C APIs: Objectstore

queries are expressed using a predicate written in C, and Itasca queries are expressed using

a predicate written in LISP. A preprocessor would allow the queries to be expressed in

Ada and converted automatically to the proper form.

3.4.2 Schema Specification File. The application development process, using the

Ada ODM interface, is a one or two step process depending on what must be done. If a

new application will be using an existing database with a schema already defined, then

development consists of simply writing the application using the functionality available in

the main interface package and any annexes. If the database does not exist, the developer

must prepare a separate schema specification file along with the main application.

The schema specification file is used by the preprocessor to create the desired database

and set up the initial schema required by the application. A database is an operating sys-

tem file. The developer specifies the name of the new database file and all of the data types

that will be used in a persistent context. If inheritance is supported by the ODM system,

the class hierarchy is also specified at this point using special constructs. The preprocessor

then can read the schema specification file, create the database, and set up the schema. If

Objectstore was being used, this would mean creating the schema source file which would

be used to run a simple program to create the database. The schema source file would

then be used with subsequent applications that use the database. If Itasca was the under-

lying system, this would mean just running a program to do all the work since the C API

contains all the functions needed to create a database and schema. The reasoning behind
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Table 3.1 Main Interface Package Operations

Raquirement Operation

Initialization IN1T.ADAODM
STOP.ADAODM

Database DBOPEN
Manipulation DBCLOSE

DBIDESTROY
Object MAKE-OBJECT
Manipulation DELETE-OBJECT

UPDATE.ATTRIBUTE
GET-ATTRIBUTE
ADD-TO-SET
REMOVEFROM-SET

Transaction START.TXN
Management COMMITTXN

ABORTTXN
Queries QUERY

QUERY-PICK

a schema specification file was driven by the desire to resolve two very different ways of

doing the initial schema creation. Specifically, the Objectstore way and the Itasca way.

However, this concept is general enough to use with any system.

3.5 Operation Summary

Table 3.1 categorizes one possible set of operations for the main interface package.

This is a minimal set based on the requirements outlined above. Any ODM system would

certainly be expected to support the operations listed in the table. The semantics of these

operations are described in the next chapter. Appendix A contains the complete Ada

specifications. There are no operations for schema definition or database creation since

this is accomplished by the preprocessor. Instead, a syntax is needed so that the user can

specify the schema and database name in the schema specification file. Ideally, this syntax

would look a lot like Ada. The next chapter deals with mapping the functionality from

the table to specific ODM systems used at AFIT. Additional operations are also discussed

along with possible annex packages.
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Operations to support schema evolution and version management are not included

because approaches and semantics between ODM systems vary so widely. In fact, these

capabilities are better suited as annexes to the main interface package. These important

requirements are addressed in the next chapter when specific system implementations are

discussed.

3.6 Summary

This chapter specified requirements for an Ada ODM interface. Design goals for the

interface were then outlined. These goals include portability, transparency, completeness,

and performance. In addition, a design was proposed to meet the requirements and goals.

Finally, a minimal set of operations was presented for the main interface package. In the

next chapter, we investigate the issues involved in implementing these operations.

3-11



IV. Implementation Issues

4.1 Overview

The purpose of this chapter is to describe how the Ada ODM interface would be

implemented using the ODM systems at AFIT and how the development process would

work. Itasca and Objectstore are used in the descriptions since they provide the largest

contrast in approaches. There is not just one correct way to implement each required

ftnction. The implementation of the database interface layer can be accomplished in

different ways. However, the semantics of each function should be the same regardless of

the ODM system being used.

The implementation described in this chapter is based on the use of the C API

for both Itasca and Objectstore. It is also based on the use of Ada bindings to the

respective C APIS. The following sections discuss the Ada binding technique and some

type considerations. The remainder of the chapter deals with the mapping of Itasca and

Objectstore functionality to that required by the interface.

4.2 Sun Ada Interfacing

The Ada programming language includes facilities to make calls to programs written

in a different programming language. This section describes the way Ada programs can

make calls to C routines using the Sun Ada development environment. This technique is

used to enable the database interface layer to communicate with the ODM system being

used.

4.2.1 Ada Bindings. Sun Ada communicates with other programming languages

through the use of pragmao which are instructions to the compiler. The pragma statements

INTERFACE and INTERFACE.NAPE allow Ada programs to call subroutines defined in C, Ada,

PASCAL, and FORTRAN. The technique is best illustrated by the following example:

1: procedure c.start.objectstore;
2: pragma INTERFACE(C, c.start.objectstore);
3: pragma INTERFACENAJE(c-start.objectstore,
4: "start.obj ectstore");
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5: procedure STARTOBJECTSTORE is
6: begin
7: c.start.objoctatore;
8: end STARTOBJECTSTORE;
9: pragma INLINE(STARTOBJECTSTORE);

This code fragment was taken from the Ada/Objectstore prototype. It appears in

the body of the interface package and is used to call the Objectstore C API function

start-objectstore which performs some required initialization of the system. The speci-

fication for the package contains the declaration for the Ada procedure START.ODBJECTSTORE

which is all that is visible for the programmer's use. Line 1 is a declaration of the C routine

that will be called, line 2 indicates to the compiler that the procedure c.start-obj ectstore

uses a C language protocol, and lines 3 and 4 inform the compiler of the actual library name

the routine should be mapped to at link time. The C routine is then called within the Ada

procedure STARTTOBJECTSTORE on lines 5 through 8. The final line uses the pragma INLINE

which causes the Ada compiler to expand the Ada routine inline where called, rather than

generating call/return instructions. This results in reduced stack manipulation and fewer

subprogram calls during execution.

4.2.2 Data Type Representation. The biggest problem with designing the bind-

ings is ensuring that any Ada types used in conjunction with the C subroutines are of

a compatible data representation in both languages. The Objectstore function used in

the example above has no parameters. However, many functions used by Objectstore and

Itasca do require parameters, and if the Ada program does not use a parameter with the

word size, value range, or alignment expected by the C routine, erroneous results could

occur.

The Sun Ada programmer's guide (16) cites two approaches to creating parallel data

representations. The first approach is to simply read the vendor's documentation and

use types that are known to be parallel between the two languages. For example, the

type INTEGER in Ada corresponds to the type int in C, while the type SHORT-INTEGER

is equivalent to the type short in C. Problems can arise with this approach due to the

fact that neither Ada nor C compilers are required to use a particular size to represent

any particular type. Therefore, an implementation is free to choose a representation based
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on hardware considerations. The second approach is to use Ada representation clauses

which allow the Ada programmer to define an exact duplicate of the physical layout of any

data type in another language once it is known. These type definitions are then largely

independent of the implementation so that type, record layout, and alignment can be

controlled. For example, a C unsigned integer is one type that does not have a predefined

Ada equivalent. This type can be created using representation clauses as follows:

type CUNSIGNEDSHORT is range 0 .. (2 ** 16) - 1;
for CUNSIGNEDSHORT'LENGTH use 16;

u-var : CUNSIGNEDSHORT;

The first statement creates an Ada type with a range of values equivalent to the C

type's range. The second statement guarantees that at most 16 bits of storage are allocated

to every object of this type, and then the final statement declares a variable of the new

type.

One thing to keep in mind when matching C types to Ada types is that the pragma

interface statements only permit 32-bit or 64-bit scalar values to be passed. As a result of

this limitation, Ada types such as SHORT-INTEGER must be passed to a C function using an

address. Fortunately, system address is a predefined Ada attribute defined in the SYSTEM

package and can be used for this purpose. Compound types such as arrays or records

can also be passed using a system address since both Ada and C associate the label of

compound types with a base address. As long as the compound types are composed of

equivalent base types, the structure of the compound types will be identical including the

offsets for accessing the individual components.

A final consideration for data representation between Ada and C is string types. A C

string is terminated by a null character and is represented by a pointer to the first character.

An Ada string is represented by a pointer to an unc, ,strained array of characters and has

a length attribute. Some provision must be made .ien passing Ada strings to C routines

to make the appropriate conversions. For a complete mapping of Ada and C types, see (7).
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4.3 Mapping Functionality

The main interface package contains the standard functions and procedures that

must be supported by the underlying ODM system. This section describes how Itasca and

Objectstore can be used to implement these facilities. The main goal here is to present

one interface to the application regardless of whether the Itasca interface package or the

Objectstore interface package is used in the database interface layer. Each section features

an explanation of how the procedure or function from the main interface package is used

followed by a discussion of the implementation issues.

4.3.1 Initialization. The Ada ODM interface includes two procedures to signal

the beginning and end of access to the ODM system. INITADAnDM needs to be called at

the beginning of any Ada application which uses the interface. Both Itasca and Objectstore

require an initial function to be called at the beginning of any application which uses their

respective C APIs. The Itasca function Iconnect-itasca requires four parameters while

the Objectstore function start -obj ectstore has no parameters. To resolve this difference,

the INIT.ADADDM procedure can have default values for the Itasca parameters. This way,

if Objectstore is used, the parameters can be omitted when calling INITADAnDM. Another

more general option is to use Ada's overloading abilities. The interface could include

an overloaded version of INITADAn.DM for each ODM system that could be used. Using

default values is the recommended approach since transparency is a major goal.

STOP.ADAnODM is the final function called at the end of any Ada application which

uses the interface. Itasca requires the function Idisconnect-itasca to be called at the end

of each C application to close the connection to the Itasca image. There is no analogous

Objectstore function. Therefore, a call to STOPADAODN causes Idisconnect-itasca to

be called in the Itasca package, but is a no-op in the Objectstore package.

4.3.2 Database Manipulation. There are three procedures in the main interface

package for manipulating databases: DB.OPEN, DBCLOSE, and DBDESTROY. Creation of

databases is done automatically by the preprocessor. The Ada ODM interface uses a

conceptual view of databases similar to Objectstore. In Objectstore, a database is a
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separate operating system file. Access to databases is controlled by setting permissions

(upon creation) much like one would do with a UNIX file using the chmod command.

Itasca's view of databases is a little different. Itasca has one database file at each distributed

site. Each of these files has one shared database partition and multiple private partitions.

Users don't make changes to the shared partition directly. Changes to data are made

by checking out objects from the shared, distributed database, making the changes in a

private database, and then committing the changes to the shared database at any time

later. Functions in the C API can be used to control access to the private databases.

Itasca's conceptual view was intended to support design applications where a team

of engineers work on one project. By using the shared and private database concept, work

can be accomplished by multiple engineers simultaneously on different parts of a design.

Objectstore supports design applications through its version management facility. Central

to this facility is the concept of a workspace and a configuration. A configuration serves

to group together objects that are treated as one design. A workspace provides context

for both shared and private work. A global workspace contains one or more configurations

and can be accessed by all users. Each user can then create their own workspace as a child

of the global workspace for their own private use. Configurations can be checked out from

the global workspace to the user workspace and can be checked in to the global workspace

from the user workspace.

It is easy to see how Objectstore's version management facility can be used to sim-

ulate the Itasca conceptual view. For example, a single database with a global workspace

could be created for each design project. A DBCREATE procedure could be added to the

interface which would create a user workspace as a child of the global workspace. This

would be analogous to an Itasca private database. The functionality in the version man-

agement facility could then be used to map to Itasca functions. For example, the version

management facilty has check-in and check-out functions similar to those of Itasca. The

problem with this approach is that it uses Objectstore's robust version management facility

in a very limited way. In addition, this is an awkward approach for applications that don't

really need the separate shared and private workspaces. By using Objectstore's view of

databases, the version management facility can be added as an annex. In Itasca, a private
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database will correspond to a database file. The three procedures in the main interface

package would all operate on private databases. The shared database would not be used.

This approach uses Itasca in a restrictive way, but it is favored because of its generality.

It is useful to maintain the concept of a current database as Itasca does. In Itasca, all

work is done in the context of the current private database. In Objectstore, the database

must be specified as a parameter in many functions since multiple database files can be

open. By allowing only one database file open as the current database, the user is freed from

including the database as a parameter with every function that requires it. The Objectstore

interface can keep up with the database name and pass it to the functions. Also, the

database parameter would be meaningless to the Itasca interface since it is not needed

once the current private database has been set. While this approach is recommended,

there is an associated cost. Objectstore users will lose the ability to open and manipulate

multiple database files simultaneously in the same application.

4.3.3 Transactions. Control over transactions is handled through three proce-

dures. STARTTXN is used to signal the beginning of a transaction COMMIT_.TXI commits

all changes to persistent data since the last commit, and ABORTTXN aborts all changes to

persistent data since the last commit. These procedures can all be directly implemented

by simply making calls to the analogous functions in either Objectstore or Itasca. Itasca

doesn't have a function to explicitly start a transaction, but this can be simulated by

calling the Itasca function Icom•it whenever STARTTXN is called.

As long as a fiat transaction model is used, the simple implementation above works

well. Implementing nested transactions is a little more complicated. Objectstore allows

nested transactions and provides additional functions to support this concept. Each call to

the Objectstore function transact ion.begin, returns a pointer to a transaction. Normally,

this pointer is then assigned to a variable within the application. The pointer is then used to

call the functions transaction-comnit and transaction-abort. The transaction pointers

are also used as parameters in the functions get-current and get-parent to allow the

user to reference a transaction at any nesting level. Keeping track of pointers could be
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handled transparently by the Objectstore interface package, but then the ability to abort

or commit a transaction at any nesting level is lost.

Itasca's documentation doesn't explicitly advertise support for nested transactions,

but has a mechanism for doing so. A session in Itasca is a program unit which encap-

sulates a sequence of transactions. The Iopen.session function starts a session and the

Iclose-sesssion function ends a session. Sessions are activated and deactivated in a stack-

like fashion. When Iopen.session is called, the current session is suspended. After a call

* ) Iclose-session, the most recently deactivated session is reactivated. Therefore, to

simulate nested transactions, each call to the procedure STARTTXN can open a session, and

each call to COMMIT_.XN or ABORT-TIN can close a session.

It is probably best to sacrifice Objectstore's ability to reference any nesting level

in the interest of transparency. The user will then have to abort or commit transactions

starting from the innermost level. In addition, the Objectstore interface will need to keep

up with the transaction pointers.

4.8.4 Initial Schema Definition. The preprocessor is responsible for creating

databases and for creating the initial schema definition for each database. It does this using

information provided by the application developer in the schema specification file. Creating

applications in this way ensures that the developer will have a consistent, transparent

development process regardless of which ODM system is being used.

In Objectstore's Ada interface prototype, Ada objects are directly represented in the

Objectstore database by a corresponding C type. Since any C type can be made persistent

in Objectstore, any Ada type which has a corresponding C representation can be made

persistent. In Itasca, persistence is obtained by defining the attributes and operations for a

class of objects. All user-defined classes are derived from an Itasca root class. Persistence

is automatic. The attributes of the classes are made up of C types.

The Ada record type is used to represent an object in the Ada ODM interface. If

Objectstore is used, the record will correspond to a C structure. If Itasca is used, the record

will correspond to an instance of an Itasca class. Itasca automatically groups all instances

of a class together for query purposes. This concept is useful in Objectstore as well. Queries
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in Objectstore are performed on collections which are groups of objects. To support this in

the Ada ODM interface and to appear semantically identical to the Itasca implementation,

all newly created objects in Objectstore can be placed in a collection representing their

class. This can be done at the database interface layer and thus be transparent to the

application developer. This should also be optional for each Objectstore class due to the

overhead involved. The developer could specify in the schema specification file whether

objects should be grouped into a collection.

The application developer specifies classes in the schema specification file similarly to

a normal Ada record declaration. No special keywords are necessary because the record's

declaration in the schema specification file implies the use of a persistent class. In addition,

the class hierarchy must be specified. Superclasses and subclasses are designated using

constructs similar to those proposed by Ada 9X. Itasca allows this type of class structure

to be formed, but direct implementation of inheritance is not possible in Objectstore using

the C API. This is because the C programming language does not support inheritance. The

implementation of inheritance in Objectstore is dependent on the use of C++ constructs.

One solution to this problem is to have the Objectstore preprocessor generate a

database and schema using C++. The subsequent storage and access of data would then

be done using function calls from the Ada ODM main interface package. These functions

would use the C API to manipulate data. The C++ API is not used for implementing

the main interface package because the C API is easier to match to Ada. Most functions

in the C library can be exactly replicated in Ada with return values and parameters lists

being the same. This is not always the case in the C++ API. For example, the Objectstore

function create.root features a database name parameter in the C API version. However,

the parameter is not needed in the C++ API since create.root is a member function of

the class database (7).

Databases are designated for creation by the keyword DBCREATE which is consistent

with the database operation syntax used in the main interface package. The name of

the new database is specified along with the DB.CREATE command. This name is used to

refer to the database at the application level. A full path name is used as a parameter

in Objectstore functions to refer to databases. Itasca assigns a number to each newly
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created database. The user must use that number to reference the database in subsequent

operations. To resolve this difference, the preprocessor can create a database configuration

file which maps the database name at the application level with the Objectstore pathname

or the Itasca number. Each ODM interface can then reference this file as necessary. The

following code illustrates how a simple schema specification file might look:

DB-CREATE new.DB

TYPE Person IS RECORD
name string;
son : string;

END RECORD;

TYPE Student IS NEW PERSON WITH
gpa : float;
major : string;

END RECORD;

TYPE Employee IS NEW PERSON WITH
salary : float;
supervisor : string;

END RECORD;

Ada syntax is retained as much as possible for the convenience of the Ada program-

mer. The Student and Employee class are subclasses of Person. They will inherit the

attributes of Person in addition to their own attributes. See Appendix B for the complete

syntax.

If Objectstore is being used, the preprocessor creates a schema source file that must

be used with subsequent applications, and a UNIX file that serves as the database. For

Itasca, a private database partition is created with the specified schema.

4.3.5 Object Manipulation. Three operations are provided in the main interface

package for manipulating database objects. KAKE.OBJECT creates an instance of a class.

Parameters include the class name and the values of any attributes. MAKE-OBJECT cor-

responds to the Itasca function Imake. To implement MAKE-OBJECT in the Objectstore

interface, an Ada record corresponding to the given class name must be persistently al-

located using the given attribute values. This record object must then be added to the
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collection representing the class. This can all be done at the database interface layer so

that NAKE-OBJECT is semantically identical using either Itasca or Objectstore.

The DELETEOBJECT operation removes an object from a class. It corresponds to the

Itasca function Idelete.object. With Objectstore, the object must be removed from the

appropriate collection and then deleted from storage. Again, this can be accomplished in

the Objectstore interface so the application need only call DELETE-OBJECT.

The UPDATE-OBJECT operation is used to change an attribute value for a given object.

Parameters include the OID, the attribute name, and the new value. The analog Itasca

function is Iupdate.attribute. Objectstore allows changes to persistent objects directly

rather than through function calls. For instance, the fields of a persistent C structure can

be changed in the same way as its transient counterpart. There are certain advantages to

requiring that all assignments in the Objectstore C API be accomplished through calls to

UPDATE-OBJECT. To understand these advantages, it helps to understand how Objectstore

supports relationships. In C++, 1-to-1 relationships are represented by an embedded class

with only a single pointer field. For multi-way relationships, the embedded class contains

an Objectstore collection. Assignment and initialization are overloaded to effect proper

relationship maintenance. This type of relationship maintenance is not supported in the

Objectstore C API. Support of relationships can only be achieved the same way in C by

requiring that all assignments be accomplished through function calls since the assignment

operator is primitive and not overloadable. By requiring the use of UPDATE-OBJECT to

change an object attribute value, relationship maintenance can be handled on the database

interface level. The drawback is the associated loss in persistence transparency. Persistent

Ada records (objects) require special manipulation not required by transient Ada records.

The MAKE.OBJECT operation must be implemented as an Ada function since it re-

turns an 01lD for the new object. This 011D can then be used as a parameter in the

DELETE-OBJECT or UPDATE_.BJECT operation. Both Objectstore and Itasca use pointers to

pass OIDs. These pointers can be mapped to suitable Ada integer types to use in the Ada

interface.
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One major drawback of implementing objects in this way concerns methods. There is

no way to encapsulate code with individual objects and still maintain an acceptable level of

transparency. Itasca features the ability to define methods for a single object, but the code

is written in Lisp. In addition, this ability does not map to a similar ability in Objectstore.

Objectstore associates code with objects through the abilities of the C++ programming

language. Normally, Ada programmers will associate code with abstract data types using

Ada's package facilities. However, this won't work in the implementation described above

since the objects are not actual Ada types. The Ada record is used to define the class, but

the actual object representation in the database is a C structure (Objectstore) or an Itasca

class instance. Manipulation of the objects is accomplished through predefined functions.

These objects can't be declared as a type in an Ada package.

4.3.6 Queries. The commands to perform queries are QUERY and QUERY-PICK.

These represent two basic commands that any ODM system should be able to support.

QUERY takes a class name and returns a set of objects that satisfies a given query expression.

QUERY-PICK returns a single object that satisfies the query. Both of these operations have

corresponding functions in Itasca. Objectstore also supports these two functions directly,

but the Objectstore query functions must be used with collections.

The problem with implementing queries lies with the query expression parameter

used in each function. Itasca uses a Lisp expression while Objectstore uses a C expression.

Either a common syntax should be used at the application level and translated into an

appropriate expression, or the application developer must be famaliar with the particular

ODM system's way of expressing queries. Requiring the developer to be famaliar with

Lisp or C would be in conflict with the goal of transparency so creating a common syntax

would be preferred.

4.4 Annexes

The main interface package contains a basic set of operations that any system must

support. However, there are some ODM concepts that are very important but are more

difficult to standardize. This is because the concepts are realized in ODM systems in a
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variety of ways with varying degrees of sophistication. By allowing optional annexes as

part of an Ads ODM interface, we can suggest a standard way of implementing an ODM

concept, based on a specific system, while realizing that not every system can conform.

The following sections suggest two possible annexes for Objectstore and Itasca.

4.4.1 Schema Evolution. Itasca features a fairly sophisticated schema evolution

capability. All of the schema evolution requirements discussed in the previous chapter are

supported by Itasca. A similar schema evolution ability could be proposed for the Ada

ODM interface since the object models are similar. The functional mapping would be very

similar since an Ada record corresponds to an Itasca class. Abilities would include adding

or deleting record fields, changing the field types, adding or deleting record classes, and

changing the class hierarchy. All of this can be done in Itasca by simple calls to the ap-

propriate functions. Most importantly, schema changes in Itasca can be done dynamically

while an application is running.

Objectstore does not feature the kind of dynamic schema evolution supported by

Itasca. Changes to the schema must be defined before compilation in a separate schema

source file. Other than this problem, Objectstore allows similar changes to the schema.

Mapping schema evolution for these two systems into a common, transparent process would

require some preprocessing just like the initial schema definition. This preprocessing would

mean Itasca users would lose the ability to implement schema changes dynam ically. To

avoid limitations on Itasca's schema evolution abilities, an annex could be provided for

these functions.

4.4.2 Version Management. Both Itasca and Objectstore feature version man-

agement but the two interpretations are quite different. As explained earlier, Object-

store allows objects to be grouped together in configurations which belong to a particular

workspace. The workspaces form a parent/child hierarchy of arbitrary depth. This arrange-

ment allows many degrees of sharing and privacy. Workspaces higher in the hierarchy have

greater degrees of sharing than lower ones, and workspaces lower in the hierarchy feature

greater degrees of privacy. Versions are created by checking out (or locking) a configuration

from a shared workspace to a private one.
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In Itasca, there are four levels of versions for an object: transient, working, released,

and generic. A transient version can be updated or deleted by the user who created it.

Also, new transient versions can be derived from existing ones. The existing ones are then

promoted to a working version. Working versions are considered stable and cannot be

updated, but can be deleted by their owner. Promotion to a released version can be user-

specified or system-determined. A released version cannot be updated or deleted. Generic

versions are used as general object references. For instance, if a generic object is deleted,

the entire version-derivation hierarchy is deleted.

Itasca controls sharing of information through its concept of a shared database and

multiple private databases, however, this conceptual view is lost in the Ada ODM interface

since the Objectstore view of individual database files is being used. In other words,

only Itasca private databases are being used in the Ada ODM interface. Rather than

limiting Objectstore's version management to simulating Itasca's four version levels, the

Objectstore version management facility could be introduced as a separate annex.

4.5 Summary

This chapter has taken a look at the challenges involved in implementing the Ada

ODM interface. The binding techniques discussed are a proven method of interfacing Ada

to an ODM system. The most significant example is the Ada/Objectstore prototype devel-

oped by Object Design and extended by Li Chou (7). The functional mapping described

in this chapter represents a mix of concepts from both systems in an attempt to support

a basic set of operations for Ada application developers. Annexes are provided to support

desirable concepts which can't be supported by all ODM systems.

The implementation of the main interface package operations can be accomplished

in different ways. The final chapter looks at the conclusions that can be drawn from this

research and recommends future directions for research in this area.
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V. Conclusions and Recommendations

5.1 Overview

This chapter takes a look at the advantages and disadvantages of the design approach

and the degree to which the design satisfies the design goals. In addition, recommendations

for future work in this area are presented.

5.2 Conclusion.

In this thesis, we defined a set of requirements and proposed a design for an Ada

ODM interface. The design goals were portability, transparency, and completeness for Ada

programmers. Portability means that the ODM system can be changed without affecting

any existing application programs. Transparency means that Ada programmers can use the

interface without having to know different programming languages or specifics about the

different systems being used. Completeness means that all of the functionality of the ODM

systems are available to Ada application developers. All of these goals were considered

equally desirable during the design process. While planning the implementation using

Itasca and Objectatore, it became apparent that the goals could not be completely realized.

Lack of standardization in ODM systems was the major obstacle in reaching these goals. In

(17), Voketaitis describes a portable RDBMS interface for Ada. The success of this effort

was largely due to the standardization of relational systems through SQL. By creating an

interface that utilizes only ANSI-SQL compliant features, functional compatibility with

other vendor products is ensured. This is not the case with ODM systems. There is

no standardization in the field of ODM which makes defining a common Ada interface

more difficult. A standard needs to be defined, but existing systems may have difficulty

conforming. Implementation of a prototype for Itasca and Objectstore should be guided

by a prioritization of the design goals. If portability is paramount, reduced capability is

a likely consequence. If functional completeness is the concern, a direct interface to the

one system that best meets an application's requirements might be a better solution. The

following sections discuss the merits and drawbacks for the proposed interface.
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5.2.1 The Preprocessor. The preprocessor concept was employed to help meet

the goal of transparency during application development. Objectstore requires that a new

database schema be specified before compilation in a schema source file. Itasca allows

programmers to set up a new database schema within the application. The Ada ODM

interface requires new database schemas to be specified in a schema specification file. This

file is then read by the preprocessor which creates the database and its associated schema.

Itasca users lose the ability to create databases and schemas at run time. This could

be a disadvantage in some applications. Some other disadvantages of using preprocessors

include the cost of development, testing, and maintenance.

5.2.2 Loosely Coupled versus Tightly Coupled. Many of the problems associated

with implementing the Ada interface are due to the fact that the object models and the

data types differ between Ada and the ODM systems and between the ODM systems

themselves. This would prompt some to suggest that a tightly coupled interface would

be the answer for ODM with Ada. However, this argument ignores the need to interface

Ada to existing commercial systems. Past experience with relational systems indicates

that, over time, large repositories of legacy data will be established. Ada applications will

require access to this data just as they do to relational databases today.

5.2.3 Interfacing to a Single System. Having established the need to interface

to existing systems, some may argue that a direct interface to one system would be more

effective. With one system, the Ada interface only has to conform to one object model.

Also, fewer compromises would have to be made in functionality. The problem again lies

with the fact that no dominant product has emerged and no standards have yet been

defined. Dependence on one product could be disastrous if that product fails to succeed in

the marketplace. A portable interface will allow development to proceed despite the state

of flux in the industry.

5.2.4 Language Neutral vs Language Centered. The proposed implementation

in chapter four is based on an object model similar to Itasca's language neutral model.

This was done to facilitate support of relationships and sharing of objects. In addition,
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inheritance can be provided to Ada programmers by using Itasca's model. The problem

with the language neutral data model is choosing a data model. The data model of the Ada

ODM interface represents a least common denominator approach which gives up power.

A more complicated data model would make it more difficult for some ODM systems to

conform.

Another approach would have been to try and make the Ada ODM interface language

centered like Objectstore. Using Objectstore's philosophy, any Ada type could be made

persistent and would be manipulated the same way as transient data. This would have

been easy to do using Objectstore since it was designed with seamlessness in mind, but

in Itasca, some manipulation would be required to make the interface appear seamless to

the Ada programmer. At issue here is whether or not the goal is a persistent Ada or just

ODM access for Ada.

5.2.5 Itasca and Objectstore. Chapter four described how the operations of the

Ada ODM interface could be implemented using Itasca and Objectstore. This was a good

exercise to point out the challenges associated with implementing two ODM systems with

very different approaches to ODM. The result is a mix of concepts from both systems. For

instance, Itasca's object model is used along with Objectstore's database file concept. Some

implementation decisions were based on necessity: Itasca could not support referencing

nested transactions. Other decisions were made based on practicality: simulating Itasca's

shared and private database using Objectstore's version management facility would be

awkward and limiting. The remainder of this section looks at some drawbacks of the

proposed implementation.

5.2.5.1 Inheritance. Inheritance is not available when using Objectstore

with the Ada ODM interface. This is because inheritance is implemented in Objectstore

through constructs associated with C++ classes. This is a good example of a limitation of

the language centered approach. Objectstore was designed to extend the C++ language

and thus using other languages can result in reduced capability. A solution to this is to

have the Objectstore preprocessor set up databases and schemas using the C++ API and

then use the C API to implement the object manipulation functions in the main interface
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package. By contrast, Itasca can support inheritance regardless of the language being used.

Itasca has objects that are not particular to any language. Class hierarchies are set up

through function calls. Since inheritance is a requirement for the Ada ODM interface, the

C++ API should be used for initial schema specification in the Objectstore preprocessor.

5.2.5.2 Persistence. In Objectstore, any C++ or C type can be made

persistent. Objectstore was designed so that transient and persistent data could be ma-

nipulated the same way. Itasca classes are automatically persistent, and there is a clear

distinction in an application program between transient and persistent data. The Ada

ODM interface follows Itasca's persistence model. This could be viewed as a disadvantage

for Ada programmers. A seamless interface (such as Objectstore with C++) provides a

more computationally complete interface. Ada programmers would certainly benefit from

the ability to designate any type persistent and subsequently use the persistent types in

normal computations.

5.2.5.3 Operations. One important concept of the object-oriented paradigm

is the ability to encapsulate code and data into a single object. Itasca allows the defini-

tion of Lisp routines that can be associated with an object and stored in the database.

Objectstore associates code with objects through C++ classes, but does not store that

code in the database. Both of these concepts are problematic for the Ada ODM interface.

Requiring Ada users to know Lisp would conflict with the goal of transparency. On the

other hand, since the C API is being used in Objectstore, the ability to associate code

with objects through C++ classes is lost.

Normally, Ada programmers associate code with data through Ada's package facility

creating an Abstract Data Type. This couldn't be done in the proposed implementation

since a persistent object is not a specific Ada type. Although classes are defined using

Ada record constructs in the schema specification file, no record declarations are necessary

in the main application. Objects are handled this way to prevent users from trying to

manipulate objects as if they were Ada records.
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5.3 Recommendations for Future Research

Implementing a prototype interface would help to further isolate problem areas. How-

ever, this could get to be quite an effort. Creating the bindings to the respective C APIs

would be relatively simple, but a preprocessor must be developed for both Itasca and

Objectstore. The person or persons attempting such an effort must be proficient in Ada,

C, Objectstore, and Itasca. Other potential areas for further research and development

include:

"* Relationships - As explained in chapter four, Objectstore does not provide support

for relationships in the C API. However, this support could be added in the Ada

ODM interfixe since updates to object attributes are accomplished through function

calls. These functions could be used to maintain referential integrity. This should be

studied further to determine the best implementation.

"• Queries - Itasca queries are expressed using Lisp syntax while Objectstore uses C

syntax. This is a common problem among the different vendors. It would be useful to

establish a common syntax to express queries for Ada programmers. The interface

could then translate this syntax into an appropriate expression for the respective

ODM systems. The preprocessor could also be made responsible for the translation.

"* Ada 9X - Ada 9X includes object-oriented enhancements including support for in-

heritance. The impact of Ada 9X on the Ada ODM interface should be investigated.

Ada 9X may make interfacing to the C++ API in Objectstore more feasible. This

would allow the interface to be more functionally complete since Objectstore was

designed for C++.

"* SQL3 - One of the main difficulties in defining an interface that is portable to multiple

ODM systems is the lack of standardization. Implementation of many ODM concepts

varies considerably between systems. The new SQL standard has potential to improve

this situation by adding ODM concepts. One area of study could be to investigate

the potential impact of the new SQL standard on the Ada ODM interface.
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5.4 Final Comments

As the Ada programming language becomes more widely used for information sys-

tems development, a viable interface between Ada and ODM systems is a critical require-

ment for success. This thesis is part of an on-going effort at AFIT to develop a portable,

Ada ODM interface. Li Chou's work showed that a loosely coupled interface using Ada

bindings to the C API of an existing ODM system is possible without serious degradation

in performance. This effort defined requirements for a portable interface. A design was

proposed including Ada specifications for a minimal set of functionality. The groundwork

is now set for implementation of a prototype interface.
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Appendix A. Ada Specifications

This appendix contains the Ada specifications for the main interface package and the

proposed annex packages.

A.1 Main Interface Specification

The following Ada Specification includes the functions and procedures of the main

interface package. The specification takes advantage of some Ada features such as default

parameters and overloading. For example, the INIT-ADAflDM procedure features some

default parameters since Itasca requires a user name and password for its initialization

function while Objectstore does not. The procedures used for attribute manipulation are

overloaded since different data types are involved. Some of the required overloadings are

shown.

with SYSTEM; use SYSTEM;

package ADAODM is

type TRANSACTION is private;
type OBJECT is private;
type SET-TYPE is private;

procedure INITADAODM(USER: STRING:- "none";
PASSWD: STRING:- "none";
SERVER: STRING:- "hawkeye");

procedure STOPADAODM;

procedure OPENDB(DBNAME: STRING);

procedure CLOSEDB (DBNAME: STRING);

procedure DESTROYDB(DBNANE: STRING);

function STARTTXN return TRANSACTION;

procedure COMNITTXN(TXN: TRANSACTION);

procedure ABORTTXN(TXN: TRANSACTION);
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function KAIE..OBJECT(CLASS: STRING; ATTRIBUTES: STRING) return OBJECT;

procedure DELETE-.OBJECT(OBJID: OBJECT);

procedure UPDATE...ATTRIBUTE(ODJID:OBJECT; ATTR: STRING; VALUE:OBJECT);
procedure UPDATE..ATTRIBUTE(OBJID:OBJECT; ATTR:STRING; VALUE: INTEGER);
procedure UPDATE..ATTRIBUTE(OBJID:OBJECT; ATTR: STRING; VALUE: FLOAT);
procedure UPDATE-.ATTRIBUTE COBJID :OBJECT; ATTR: STRING; VALUE-STRING);
procedure UPDATE-.ATTRIBUTE(OBJID :OBJECT; ATTR:STRING; VALUE:CHAR);

procedure GET-.ATTRIBUTE(OBJID:OBJECT; ATTR:STRING; out VALUE:OBJECT);
procedure GET-.ATTRIBUTE (OBJID :OBJECT; ATTR: STRING; out VALUE: INTEGER);
procedure GET-.ATTRIBUTE(OBJID:OBJECT; ATTR:STRING; out VALUE:FLOAT);
procedure GET..ATTRIBUTE(OBJID:OBJECT; ATTR:STRING; out VALUE:STRING);
procedure GET-.ATTRIBUTE(OBJID:OBJECT; ATTR:STRING; out VALUE:CHAR);

procedure ADD-.TO-.SET(OBJID:OBJECT; ATTR: STRING; VALUE:OBJECT);
procedure ADD..TO-.SET(OBJID:OBJECT; ATTR:STRING; VALUE:INTEGER);
procedure ADD...TO-.SET (OBJID: OBJECT; ATTR: STRING; VALUE: FLOAT);
procedure ADD-.TO..SETCOBJID:OBJECT; ATTR:STRING; VALUE:STRING);
procedure ADD...TO-.SET(OBJID:OBJECT; ATTR:STRING; VALUE: 'AAR);

procedure RENOVE..FROM..SET(OBJID: OBJECT; ATTR:STRING; VALUE: OBJECT);
procedure REMOVE-YROM..SET (OBJID: OBJECT; AmT: STRING; VALUE: INTEGER);
procedure RENOVE..FRON-.SET (OBJID :OBJECT; AmT: STRING; VALUE: FLOAT);
procedure REMOVE-FROH..SET (OBJID :OBJECT; AmT: STRING; VALUE: STRING);
procedure REMOVE-.FROM-.SET (OBJID :OBJECT; AmT: STRING; VALUE: CHAR);

function QUERY (CLASS: STRING; EXPRESSION: STRING) return SET...TYPE;-
function QUERY.YC(CLASS:STRING; EIPRESSION:STRING) return OBJTYEC;

private
type TRANSACTION is new INTEGER;
type OBJECT is new INTEGER;
type SET-.TYPE is new INTEGER;

end ADAODM;
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A.2 Annex: Schema Evolution

The following Ada specification includes the functions and procedures needed for

schema evolution. This functionality has been placed in a separate annex since many

systems cannot support dynamic schema evolution.

package SCHENAMEVOLUTION is

type OBJECT is private;

procedure ADDCLASS (NAME: STRING; SUPERCLASS: STRING);

procedure RENOVECLASS (NAME: STRING);

procedure ADDSUPERCLASS (NAME: STRING; SUPERCLASS: STRING);

procedure RENOVESUPERCLASS (NAME: STRING; SUPERCLASS: STRING);

procedure ADDATTR(CLASS: STRING; ATTILNAME: STRING; INITVALUE: OBJECT);
procedure ADDATTR (CLASS: STRING; ATTR._NAME: STRING; INITVALUE: INTEGER);
procedure ADDATTR(CLASS: STRING; ATTA._NAME:STRING; INITVALUE: FLOAT);
procedure ADDATTR(CLASS: STRING; ATTRNAME: STRING; INITVALUE: STRING);
procedure ADDATTR(CLASS: STRING; ATTRNAME: STRING; INITVALUE: CHAR);

procedure DELETEATTR(CLASS: STRING; ATTR_NAME: STRING);

private
type OBJEC, is new INTEGER;

end SCHEMIEVOLUTION;

A.3 Annex: Version Management

Unlike dynamic schema evolution, many ODM systems do support version man-

agement in some form. However, the implementations can be quite different. Itasca's

versioning relies on the shared and private database concept. Since the shared database is

not used in the Ada ODM interface, some other versioning scheme is needed. This annex

was added to support Objectstore's version management facility.

package VERSIONS is
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type CONFIGURATION is private;
type WORKSPACE in private;

function NEW-.CONFIG (PARENT: CONFIGURATION) return CONFIGURATION;

procedure CHECKIN(ITEM CONFIGURATION);

procedure CHECKOU7 (ITEM: CONFIGURATION);

procedure DESTROY-VERSION (ITEM: CONFIGURATION);

procedure DELETE-.WORKSPACE(ITEM:WORKSPACE);

procedure CREATE-GLOBAL-.WS (NAME: STRING);

f unct ion NEW..WORKSPACE(PARENT :WORKSPACE; NAME: STRING) return WORKSPACE;

procedure SET-.CURRENT-.WS (ITEM: WORKSPACE);

f unct ion GET-.CURRENT-.WS return WORKSPACE;

function GET-PARENT..WS (ITEM: WORKSPACE) return WORKSPACE;

private
type CONFIGURATION is new INTEGER;
type WORKSPACE is new INTEGER;

end VERSIONS;
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Appendix B. Schema Specification File Syntax

This appendix describes the syntax used in the schema specification file. This file is

prepared by the application developer to create a new database and database schema. The

preprocessor is responsible for reading the file and performing the necessary operations.

Subsequent applications can then populate the database, perform queries, or make changes

to data values as needed.

B.1 Database Creation

Database creation is performed by the preprocessor. There is no separate function

in the main interface package for creating a database as there is for opening, closing, or

deleting a database. Specification is of the form:

DBCREATE filename;

The keyword DBCREATE is followed by a valid operating system file name. The

schema for the new database is then specified below the DBCREATE keyword. The

developer may specify more than one database for creation. The keyword is used by the

preprocessor as a delimiter to distinguish one database schema from another. Therefore,

one complete database schema should be specified before a second one begins.

B.2 Schema Specification

A schema specification is a description of each class of objects that may be used in

a database. This includes a class name, attribute names, attribute types, and inheritance

hierarchies. Classes are specified much like a normal Ada record declaration. A class

hierarchy can be designated by using syntax similar to the syntax used in Ada 9X to

specify inheritance. A class declaration is of the form:

TYPE classl IS RECORD

attrl: type;
attr2: type;
attr3: type;
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END RECORD;

A subclass of classl could then be specified as:

TYPE subclass IS NEW classl WITH

attr4: type;
attr5: type;
attr6: type;

END RECORD;

The class subclass would then inherit the attributes of classl along with its own

attributes. Multiple inheritance is not allowed in the Ada ODM interface.

B.2.1 Attribute Domains. The record fields represent object attributes. Any

discrete Ada data type can be used as an attribute value. The preprocessor will ensure an

appropriate corresponding type is used in the actual database representation. In addition,

attribute values can represent one-to-one, one-to-many, or many-to-many relationships. To

support this, an attribute type can be a class name, a set of class names, or a set of some

other discrete data type. Example syntax is shown in the last section below.

B.2.2 Class Eztent Option. The Objectstore query functions operate on Object-

store collections. To support these functions, the developer must designate whiich classes

will be represented by a collection. All new object instances will then be automatically

grouped into a collection. Users designate a class extent by adding the keyword EXTENT to

the normal class definition. For example:

TYPE EXTENT classname IS RECORD

attrl: type;
attr2: type;
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END RECORD;

Subclasses of an extent class do not automatically become extent classes. Extension

must be separately indicated for each class.

B.3 Ezampke

$$N

Figure B.1 Simple Object Model

The following example is provided to illustrate the concepts discussed above. Figure

B.1 shows a simple object model with four classes, an inheritance hierarchy and a one-to-

many relationship. In order to implement this model as a database schema, the following

schema specification file would be used:

DBCREATE employee.DB

TYPE employee IS RECORD
name STRING;
sn: INTEGER;

office : organization INVERSE employees;
END RECORD;

TYPE Military IS NEW employee WITH
rank : STRING;

END RECORD;

TYPE Civilian IS NEW employee WITH
payscale : STRING;
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END RECORD;

TYPE EXTENT organization IS RECORD
symbol : STRING;
employees : SET-OF employee INVERSE office;

EID RECORD;

Inverse relationships are indicated using the keyword INVERSE as shown above.

Queries can be performed on Organization since it was specified as a class extent.
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